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SUMMARY

The principles of transfer function analysis have been applied to a passive
optical heterodyne receiver to obtain the modulation transfer function (MTF).
MTF calculations have been performed based on an optical platform which is imag-
ing vertically varying profiles at worst-case shuttle orbit altitudes. An anal-
ysis of the derogatory effects of sampling (aliasing) and central obscurations
on both resolution and heterodyne efficiency is given.

INTRODUCTION

One measure of performance of an optical imaging system is its ability to
reproduce an object distribution with sufficient sighal-to-noise ratio and reso-
lution so as to make the information contained within the image useful. Gener-
ally, such a system may be characterized by its optical transfer function (OTF)
or, in certain systems by the modulation transfer function (MTF). (See ref. 1).

For conventional imaging systems using either coherent or incoherent illu-
mination, one usually assumes linearity in the imaging process so that the cas-
cading property of transfer function analysis applied (ref. 2). Under this
assumption, the MIF's of the individual subsystems (i.e., optics, detector, elec=-
tronics, ete.) can be multiplied to give the overall transfer function.

In this report, the principles of transfer function analysis have been
applied to a passive optical heterodyne receiver which is assumed to be imaging
vertically varying spatial profiles at worst-case shuttle orbit altitudes.
Results of the analysis show some interesting departures from the properties
described above; namely, that the cascading property must be carefully applied
and that optical receivers having obscurations, such as Cassegrains, are not
optimum for heterodyne-type detection.



SYMBOLS AND ABBREVIATIONS
source geometrical shape factor
Fourier transform of 'ﬁé, m?
effective mixing bandwidth, Hz
effective shot noise bandwidth, Hz
diameter of receiver aperture, m
direct current
distance of image from receiver aperture, m
amplitude of geometrical image signal field, (W/m2)1/2
amplitude of local oscillator field, (W/m2)1/2
amplitude of signal field in detector plane, (W/m2)1/2
electron charge, C
intermediate frequency, H,
Fourier transform of detector aperture function, me
Fourier spectrum of geometrical image spectral radiance, W/str/H,
normalized heterodyne transfer function

Fourier spectrum of local oscillator field modulated by detector
pupil function, (Wm2)1/2

coherent optical transfer function
photodetector transfer function

total electric heterodyne transfer function
I.F. amplifier and filter transfer function
low-pass filter transfer function

transfer function representing carrier diffusion and transit
time effects

square-law detector transfer function

tangent height
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Iip(Trp)
Io

LosIsyne

MTF

OTF

photodetector shot noise transfer function

Planck's constant, J(sec)

point spread function, m—2

photodetector current, A

mean-square heterodyne current power, A2

I.F. amplifier output current (current power); A, (AZ)
photodetector current induced by L.O. field, A

synchronous detector output current, A

photodetector current induced by signal field, A

spatial Fourier component of synchronous detector current, m2A
low-pass filter output current, A

intermediate frequency, Hz

geometrical instantaneous field of view

spatial frequency vector, m=1

coherent cut-off frequency, cycles/rad

coherent cut-on frequency due to central obscuration, cycles/rad
rectangular components of K, m=1

angular frequency variables corresponding to Kx,Ky, cycles/rad
product of Boltzman's constant and source temperature, J
detector edge length, m

laser heterodyne spectrometer

local oscillator

modulation transfer function

shot noise current power due to L.0O., normalization factor, A2
optical transfer function

geometrical image spectral radiance, W/m2/sr/Hz



Py total L.0O. power absorbed by detector, W

R orbital height, m

r,s detector plane spatial vectors, m

S/N signal-to-noise ratio in shot noise 1limit

T optical transmission factor

Tget aperture function of detector geometry

T* conjugate of L.O. field modulated by detector aperture, (W/m2)1/2
t time, sec

Vo vertical component of orbital velocity, m/sec

X,y rectangular components of r,s; m

z distance of object from receiver aperture, m

8(s) Dirac delta function, m—2

n quantum efficiency

Thet heterodyne quantum efficiency

0,9 angular coordinates corresponding to x,y; rad

Op instantaneous field of view, rad

A optical wavelength, m

\Y optical signal frequency, Hz

Vo local oscillator frequency, Hz

T effective integration time of low-pass filter, sec
X efficiency factor for uniform extended source

Xhet efficiency factor for arbitrary source distribution
w radian frequency, rad/sec

<> average over ensemble of signal fields

® convolution operation
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Superscript:

* complex conjugate operation

THEORETICAL ANALYSIS
Imaging Considerations

Consider an optical receiver which is imaging an object amplitude distribu-
tion as shown in figure 1. Using scalar diffraction theory, the signal ampli-
tude Eg 1in the detector plane r 1is given by (ref. 3)

40
2
E (r) = Eg(gj @ h(r) = d’s Eg(s)h(x - s) (1)
where h(r) is the impulse response of the imaging optics and Eg(g) is the
amplitude of the geometrical image of the object. The shift invariance of
h(r) can be justified for the heterodyne applications discussed here by a care-

ful examination of the various phase factors appearing in the impulse response
function.

For the mixing of two deterministic optical beams in an ideal detector, the

mean-square heterodyne current power at the difference frequency, f = |[v - vul,
is (ref. 4)
r
2 2 2
2 _ 2n_e 2 *
Iiet = ?;:;5 dr EO(E) E_(x) (2)
det

where Eo(E) is the local oscillator amplitude distribution in the detector
plane, 1n is the quantum efficiency, e 1is the electronic charge, and hv

is the photon energy. A simple classical approach is taken to obtain the
correct expression from which the spatial frequency analysis may begin. We
recognize that the geometrical image field Eg(s,v) is a stochastic process
which we synthesize by discrete frequency components with random phases. Now,
for a deterministic L.0. field and a quasi-monochromatic optical sighal, equa-
tion (1) and the generalization of equation (2) combine to give

2 2ne? { 2 2 2
= — ' J -—
£f =& det
)
J-d r'E_(r')h*(r'-s’) (3)
det
v



where < > prepresents an average over the ensemble of signal fields. It is
assumed that the source of the image field on the detector (i.e., the sun) is
spatially incoherent. The appropriate substitutions are

<Eg(§_,\))E;(§',\>)> > Af A2Py(s,V)8(s - 5')

2 2
Tpet ™ Tpet(fIAF

where Pg represents the image spectral radiance at the detector plane in

W/m?/sr/Hz and Iiet(f) is the current spectral power density in A2/Hz.

Equation (3) becomes

40
2 2,2
2 _2n"e"A 2 _ _ 2
Thet (B) = ER J a”s[p_(s, v + £) + P (s, v, - H]|TX(s) @ hi-s)]

-00

where f 2 0 and we note that the L.0O. mixes with the signal field components
at vo+ f and VY, - f. Here, we have expressed the detector overlap integral
of the L.0. field and the impulse response function as

o0

j\Tdet(E)E;(E)h(E-_ §)d2r = T;(E) @ h(-s)

-—00

where Tget(r) 1is the aperture function of the detector geometry and the pro-
duct Tdet(E)Eg(E) = Tg(g) is simply that portion of the L.O. that is trans-

mitted by the detector aperture.

Referring to the detector scheme of figure 2, the output current from the
synchronous detector is

“+oo
2 2.2
o= _ZM?L a’s J df|H_ _ (f) |2[Pg(§,\)o+f) + Pg(g,\)o—f)HTg(g)
! (hv) s (£>0)
en(-s)|’
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where Hpot 1is the total heterodyne transfer function defined by

2 2y (2 2
LN CON Rt b U0 9 - S

and T is the optical transmission factor. The various contributions to

Hpet are: the signal/L.0. mixing transfer function Hp, representing carrier
diffusion and transit time effects in the detector; the photodetector transfer
function Hy, comprised of contributions due to capacitance, resistance, and
inductance; and the I.F. (intermediate frequency) amplifier and filter transfer
function Hips. The square-law detector is assumed to have a unity transfer
function (Hgg = 1). The shot-noise transfer function Hg, is due only to
transit time effects as opposed to Hp.

Heterodyne Transfer Function

In this paper, we are interested in the spatial frequency response of the
heterodyne receiver to a vertically varying object profile as shown in figure 1.
Other than a knowledge of the total I.F. power, this is different from the I.F.
considerations discussed previously. To obtain the spatial frequency response
and, ultimately, the system modulation transfer function (MTF), we assume the
object scene radiance (and, consequently, the image scene) is linearly trans-
lated owing to motion of the optical receiver (e.g., an orbiting platform).

This induces a translation of the image coordinates by an amount

s *s - x(t)

and

Pg(i' \)O + £) » Pg(g,_ - r, \)o + £)

Further, we define

Pg(—£) = J‘ dlehet(f)|2[Pg(£, Vg t £f) + Pg(£' Vo T £) ]
(£>0)

Since the impulse response h(r) is invariant, we have the output current from
the synchronous detector as

“+co

— _ 2 _ _ 2
Iome® = Ignelz®)] = j“ d%s P_(x s)|T*(s) @ h(-s)| (4)

syn (hv)



Equation (#) is of the form of a convolution
2 2
* -
Pg(r) e ITO(r) 2 h(-x) |

Decomposition of Igypne into its spatial frequency components is obtained
by the Fourier transformation

H>

sync

-3 27K *
(K) = X e T2TRE o (r) &°r
sync — =

By use of the convolution theorem, we have

2Te2n2X2
I (XK) = =5 G (K) [G*(-K)H(-K) @ G_(K)H*(K) ] (5)
sync — (hv) — fo) — o — —

where K 1is the spatial frequency vector variable defined by its rectangular
components (Kx,Ky), Gz(K) 1is the object, or more specifically, the geometrical
image spectrum, G,(K) is the detector pupil function modulated L.O. spectrum,
and H(K) 1is the coherent transfer function of the system (ref. 3).

Equation (5) illustrates the departure of the transfer function obtained
in a heterodyne system with that obtained in conventional imaging systems.
Remembering that the coherent transfer function H(K) 1is equal to the pupil
function of the optical receiver (with a suitable change in variables) (ref. 3),
the conventional optical transfer function is proportional to

Gger (K [H(-K) @ H*(K) ]

where Gget(K) 1is the Fourier transform of the detector aperture function,
Tyet(K). In equation (5), we see, however, that H(K) 1is modified by the
spectrum of the L.0/detector combination Gg(K). The normalized convolution
of the product Go(K)H¥(K) with its negative argument complex conjugate is
defined as the heterodyne transfer function Gpg. Functionally, then, we define
a normalized heterodyne transfer function by

G*(-K)H(-K) @ G (K)H*(K)
(o] - - o — ha

G (K) = — — (6)
H [G*(K)H(-K) & G_(K)H*(K) ]5=o




or

jd2K'GO (K*)H*(K') G* (K’ ~K) H(K' -K)

G, (K) =
’ Sde'lGo@')FlH(g')lz

Heterodyne Efficiency Factor
The denominator of equation (6) indicates that the product Gg(K)H(K)
represents the optics/L.0. detector amplitude spectrum that is transferred to
the detector. Using Parseval's theorem, the integral
‘SdZKIGO(E)IZIH(E)IZ is thus the power available for heterodyning out of a
total L.O.-detector power of P, =2gd2K|Go(§)|2- For a uniform extended source,

we may thus define an efficiency factor

JdZK[GO(E)|2|H(_I_<_)|2

=
i
A
=

(7)

2 2
[érie

With this definition, the current spectrum for the synchronous detector (equa-
tion (5)) becomes

2 2.2
2 2Te ™ n" A
I = —
sync(E) (h\))2 P _XGy (E)Gg(li) (8)

Equation (8) may be related to a more conventional form of heterodyne
efficiency found in the literature (ref. 5). The synchronous detector current
is the inverse Fourier transform of equation (8); that is,

+o0

2=~ i2nKer

I r) = = =
s nc( ) j d'K IS C(K) e

-—00



For a stationary scene (i.e., before translation of the image coordinates), we
have r = 0 so that

I
sync

4o
(0) = J I (® &%k (9)
sync

Substitution of equation (8) into equation (9) and assuming a blackbody source
of geometrical shape factor Ag(g) and radiance Pg(g), we have

2hvB

HIF

P_(r) = A_(x)

g Az(th/KT -1 g
and

4Te2n2POBHIF = 5 o~

I (r = 0) = X \y dK A (K)G_(K) (10)

syne hv(ehv/KT -1 g — H =

s

where mixing occurs over an effective bandwidth 2Byzyp centered at the L.O.
frequency, a polarization loss factor of 0.5 is included, and Ag(K) is the
Fourier transform of Ag(r). The integral portion of equation (%O) has the
form of a throughput (i.e., that portion of the image passed by the heterodyne
transfer function). The product of X and this integral is an efficiency

+co

- 2, x
Xpet = X j- a’K Ag(E)GH(I_Q (11)

-—C0

so that equation (10) becomes

2 2
( 0 4Te 1 P BurpXpet
I r = =
T
sync hv(ehv/K - 1)

10



If now, we define a shot-noise level due to the L.O. by

2ne2

P B
(hv) o SIF

then the signal-to-noise ratio in the shot-noise limit becomes

B
sync 2T _HIF

= n
t
N (eh\)/KT _ 1 he Borp

Z |0
I

where we have defined

n n

= <
het n Xhet -

as the heterodyne quantum efficiency and Bgyr 1is the effective shot noise
bandwidth. Note that for a uniform extended source, A (K) = §(K) and equa-
tion (11) reduces to Xpet = X and nNpet 2 N¥x. In this case, the efficiency
factor X, which we have defined in equation (7), is equivalent (to within the
D.C. quantum efficiency n) to the heterodyne quantum efficiency, Nhet» found
in the literature (ref. 5).

System Transfer Function

Results from the previous section may now be used to calculate the system
transfer function, including the low-pass filter (see fig. 2), for the specific
example of imaging a one-dimensional object through an optical receiver which
has rectangular symmetry. This has some physical significance since the reso-
lution elements of interest in an orbiting heterodyne receiver are vertically
varying stratospheric layers. To avoid scaling difficulties in the calcula-
tions, we will use angular coordinates defined by (see fig. 1)

(12)

Kg = Kyd; K4 = Kydj (ecyecles/rad)
0 Xdi 0] YCGi

L



and

O = (rad)

Q..'ZQ
>4

o

where Op 1is the geometrical instantaneous field of view (I.F.0.V.) of the
optical receiver.

Using equations (12) and the one-dimensional geometry, equation (6) becomes

K K
. 0 . 0
[Slnc(eFKe)RECT(zKC)] ) [Slnc(GFKe)RECT(2K Y ]
GH(Ke;Kc,eF) = Ke Ke (13)
{[smc(eFKe)RECT(z——K;—)} 8 [51nc(6FKe)RECT(-2—K~;) ]}K6=O
where
: 1, |x] <2
. - Sin X X - —
sinc(X) = T and REC‘I'(—M') =

o, |x] > ¢

Equation (13) assumes a plane-wave local oscillator incident of the detec-
tor so that the detector/L.0. transfer function becomes simply the Fourier
transform of the detector aperture. Further, the coherent transfer function
for the optics is the pupil function (rectangular in shape) having a coherent
cutoff frequency of Ko = Dj/2A, where Dy 1is the diameter of the receiver
aperture and A the wavelength. This convolution process is shown in figure 3.

Equation (13) along with equation (8) gives the system transfer function
up to the low-pass filter. Expressing Gy(Kg;Ko,9) and X(Kq,0F) (eq. (7))
in integral form, we have
+2 ] v
K Ke Ke

. , o .\ . " '
Jf Slnc(eFKe)RECT(ZKC)slnc[GP(K8 Ke)]RECT( 2Kc )dKe

—00

GH(KG;KC' GF) = oo

[ 2 Ko
,._OOSlnC (eFKG) RECT (Eg) dKe

(14)

12



and

+x
K
(K ,6.) = 8 cinc2 (6K ) RECT (-2 ax |
XiRgrVp Fo

(15)
2Kc 6

-Q0

Finally, inclusion of the low-pass filter transfer function Hpp (i.e.,
the integration time, +t) which is modeled as a running mean integrator, we have

VT
HLP (Ke) = sn_nc(—z“ KB)

where v, 1is the vertical component of the orbital velocity, 2z the receiver-
object distance, and T the integration time. The total transfer function is
then the modulation transfer function

MIF(K,) = |Gy (Kg)H o, (Ko) |

Equations (14) and (15) can be evaluated in terms of tabulated functions
yielding the following relations which will be used for computational purposes

v T K

chl _) = (N)RECT(—G—)

MTEF(K,:6
¢ 8 4K

Sinc(voT <) cos(neFKe) .
F Z 9

ﬂeFKe

[Cin(‘ZﬁeFKe - 2me x|y - ¢, (2me K )] +

sin(weFKe) \\
I [si(zneFKc) - s, (2mO K, - 2nsFKc)] (16)
F o J
1 - cos(2m9_X )
_ 4 Fcl2 _ 172 -1
X(85,K ) = 3 [si(zneFKc) - 270K ] and N = (mX )

13



In the above equations, the functions C;j,(X) and
(ref. 6)
X X
s, (0 =\ 2B g g ¢, (x) =) Lo cost
in t
O le]

RESULTS AND DISCUSSION
MTF Calculations

Equations (16) and (17) may now be evaluated for some

Si(X)

are defined as

specific parameter

values which are applicable to the optical receiver in a spacelab type of

scenario.

platform at an orbital height of R m 400 Km and a tangent height Hf

A worst-case set of orbital values would be obtained for the receiver

of 10 km.

At these values, we assume that the receiver is operating in a solar occulta-

tion mode where the sunrise or sunset velocity due to orbital motion is
calculations (equations (16) and (17)) will be done
0.5 mrad, an equivalent optical receiver aperture of
0.2 sec and 0.4 sec.
11.152 um (HNO3 line)

2 km/sec. The MIF and ¥
for an I.F.0.V. of 6 =
Dy = 50.8 mm, and values of integration time of T =
ther, the value of Dp = 50.8 mm at a wavelength of A =

corresponds to an opties cutoff frequency of K, = DA/ZX =
These parameters are compatible with the values for an LHS

Vo=

Fur-~

2278 cycles/rad.
type experiment using

a tunable diode laser as the L.0. and associated optics for coupling this type

radiation to a detector having the required time-frequency

The results of the calculations are shown in figure 4.

greater than roughly 0.2 sec., the

that, for values of T
somewhat

transfer function dominates the MTF; and, for T

the low-pass filter is the dominant frequency limiting factor.

response (ref. T).

It can be shown
optical (heterodyne)
less than 0.4 sec.,
Note that the

angular frequency values can be converted to linear spatial frequency (eyecles/

km) by the relationships of equation (12) by appropriately
object space by the ratio of image distance di to object
the orbital values assumed, 2z = 2262 km and consequently
cycles/rad corresponds to an object spatial frequency of 1
tion of the MTF curves shows that resolutions of the order
be expected for the various integration times.

Efficiency Calculations

scaling image and
distance z. For

a value of 2262
cycle/km. Examina-
of 1.5 to 2.0 km may

The efficiency factor (heterodyne efficiency) given by equation (17) is

shown plotted in figure 5 for the example of the plane-wave L.O..
rectangular optics (as has been previously assumed) and cir-

tries are shown:
cular optics adjusted for equal optics and detector areas.
of the abscissa (2T6pK,) relative to heterodyne efficiency

14

Two geome-

The significance
becomes apparent when



it is noted that at the value of 2mOgK, = 7.7 corresponds approximately to
an image (sun) size filling the detector of one Airy disk of the receiver
aperture. In this region, the efficiency is in excess of 80 percent.

Sampling Error

The calculations shown plotted in figure 5 do not include any sampling
errors which may occur. Suppose we sample the output of the low-pass filter,
which has been modeled as a running mean integrator, at a rate of the inverse
of the integration time. This is equivalent to a sampled mean integration
scheme. Under this constraint, it may be shown that for certain values of T
the signal is undersampled. This results in an aliasing or foldover error
which can be significant relative to the desired signal. For example, shown
in figure 6 is the total MIF for the values of orbital and system parameters
previously stated. Two integration times are considered: T = 0.2 sec and
T = 0.4 seec. If we define the sampling error as the ratio of the "foldover"
amplitude on the MTF plot to the amplitude of the MIF itself (i.e., a white
signal spectrum), we see that the error for 0.4 sec. is approximately 40 per-
cent at 0.5 cycle/km frequency and considerably worse for higher values of
spatial frequency. Conversely, for T = 0.2 sec and the correspondingly
higher sampling rate, the sampling error is negligible.

Heterodyne Receivers With Obscurations

Telescopes having central obscurations, such as Cassegrains, are often
used for imaging a source. If this type receiver is used as a collector for
heterodyne-type detection, one needs to compare the efficiency X and the
heterodyne transfer function Gy with that obtained for no obscuration case.

In figure 7, we consider the effects of receiver apertures having obscura-
tion ratios of 0 and 20 percent for Op = 0.2 and 0.5 mrad. Note the enhance-
ment of response in the 2000 cycles/rad region at the expense of that near 1000
cycles/rad for 20 percent obscuration and Op = 0.5 mrad. The effects of
obscurations are more pronounced for square as opposed to circular geometries.
An unobscured conventional MTF discussed earlier is plotted for 6p = 0.5 mrad
showing a somewhat reduced frequency response characteristic from the heterodyne
MTF. For a smaller detector (Op = 0.2 mrad), a 20 percent obscuration tends
to assume the shape of a conventional MTF.

In figure 5, we assume a receiver aperture having obscuration ratios of
20 and 50 percent. For the values of Op and K, used earlier, 2mOpK, = 7.2,
and comparison of the various efficiency curves at this value shows striking
differences. For 50 percent obscuration case, one sees that the heterodyne
efficiency is virtually zero while for 20 percent obscuration a relative effi-
ciency of slightly greater than 0.2 is achieved. This compares with a value
of greater than 0.8 when unobscured. Note further, there is a "peaking" of the
efficiency curves for obscured systems. The rule-of-thumb requirement of one
Airy disk on the detector for "good" efficiency no longer holds, but rather the
source image needs to be less than this value to achieve the maximum efficiency

15



for that particular system. The effect can be explained on the basis of the
overlap integral (eq. (2)) of the L.0. field and signal field distributions.
Thus, the diffracted field due to the central obscuration is out of phase with
that of the primary diffracted field and, as the size of the detector and/or
optics increases, the cancellation tends to be more complete.

CONCLUDING REMARKS

The analysis of a passive heterodyne receiver with respect to its imaging
performance (transfer function) and its heterodyne efficiency shows some
interesting departures from the results which are obtained in strictly coherent
or incoherent imaging systems. For example, the cascading property of MTF
analysis must be carefully applied, since the coherent transfer function of the
optical receiver and that due to the L.O.-detector combination are not separable
but are related by the convolution of their products. Application of these
results to a spacelab-type optical heterodyne receiver (LHS) shows that resolu-
tions of the order of 1.5 to 2.0 km are possible for worst-case type orbital
scenarios.

Further, comparison of obscured-type receivers (e.g., Cassegrains) with
unobscured receivers shows that both resolution and efficiency are severely
degraded in an obscured-type receiver and, consequently, should not be used
for a passive heterodyne detection scheme.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

November 24, 1980
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